Inhibition of Specific Degradation of 57-kDa Protein in Royal Jelly during Storage by Ethylenediaminetetraacetic Acid
Author(s) -
Masaki Kamakura,
Makoto Fukushima
Publication year - 2002
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.66.175
Subject(s) - ethylenediaminetetraacetic acid , degradation (telecommunications) , proteinase k , protein degradation , royal jelly , biochemistry , chemistry , enzyme , microbiology and biotechnology , biology , food science , chelation , organic chemistry , telecommunications , computer science
We have previously shown that 57-kDa protein in royal jelly (RJ) was specifically degraded in proportion to both storage temperature and storage period, and we suggested that it could be useful as a marker of freshness of RJ (Kamakura, M., Fukuda, T., Fukushima, M. and Yonekura, M., Biosci. Biotechnol. Biochem., 65, 277-284 (2001).). Here, we investigated the effects of various proteinase inhibitors on proteinase activity in RJ and on the specific degradation of 57-kDa protein during storage. Ethylenediaminetetraacetic acid (EDTA), but not other inhibitors, inhibited the proteinase activity in RJ, and dose-dependently suppressed storage-dependent degradation of 57-kDa protein. These results suggest that EDTA inhibits a specific proteinase activity in RJ, thereby suppressing the degradation of 57-kDa protein during storage at high temperature.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom