z-logo
open-access-imgOpen Access
Recognition of a Cysteine Substrate byE. coliγ-Glutamylcysteine Synthetase Probed by Sulfoximine-based Transition-state Analogue Inhibitors
Author(s) -
Jun Hiratake,
Takayuki Irie,
Nobuya Tokutake,
Jun’ichi Oda
Publication year - 2002
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.66.1500
Subject(s) - chemistry , potency , side chain , alkyl , buthionine sulfoximine , stereochemistry , enzyme , cysteine , substrate (aquarium) , biochemistry , glutathione , in vitro , biology , organic chemistry , polymer , ecology
A series of sulfoximine-based transition-state analogue inhibitors with a varying alkyl side chain was synthesized to probe the recognition of a Cys substrate by E. coli gamma-glutamylcysteine synthetase (gamma-GCS). The sulfoximines with a small alkyl group (H, methyl, ethyl, propyl, butyl and CH2OH) each served as a slow-binding inhibitor, the sulfoximine with an ethyl being by far the most potent inhibitor to cause facile and irreversible enzyme inhibition. As the size of the side chain changed from an ethyl, the inhibition potency markedly decreased to reduce the overall affinity with concomitant loss in the inactivation rate and with facile enzyme reactivation by dilution. The sulfoximine without a side chain inhibited the enzyme with almost the same potency as that of L-buthionine-(SR)-sulfoximine (BSO). The free energy difference calculated from the inhibition constants indicates that the side chain of Cys was recognized by its size through hydrophobic interaction and contributed almost equally or even more than the carboxy group to the overall binding of Cys in the transition state.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom