z-logo
open-access-imgOpen Access
Thermal Inactivation and Product Inhibition ofAspergillus terreusCECT 2663 α-L-Rhamnosidase and Their Role on Hydrolysis of Naringin Solutions
Author(s) -
Fernando Soria,
G. Ellenrieder
Publication year - 2002
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.66.1442
Subject(s) - naringin , hydrolysis , chemistry , product (mathematics) , chromatography , nuclear chemistry , biochemistry , mathematics , geometry
The kinetics of thermal inactivation of A. terreus alpha-rhamnosidase was studied using the substrate p-nitrophenyl alpha-L-rhamnoside between 50 degrees C and 70 degrees C. Up to 60 degrees C the inactivation of the purified enzyme was completely reversible, but samples of crude or partially purified enzyme showed partial reversibility. The presence of the product rhamnose, the substrate naringin, and other additives reduced the reversible inactivation, maintaining in some cases full enzyme activity at 60 degrees C. A mechanism for the inactivation process, which permitted the reproduction of experimental results, was proposed. The products rhamnose (inhibition constant, 2.1 mM) and prunin (2.6 mM) competitively inhibited the enzyme reaction. The maximum hydrolysis of supersaturated naringin solution, without enzyme inactivation, was observed at 60 degrees C. Hydrolysis of naringin reached 99% with 1% naringin solution, although the hydrolysis degree of naringin was only 40% due to products inhibition when the initial concentration of flavonoid was 10%. The experimental results fitted an equation based on the integrated Michaelis-Menten's, including competitive inhibition by products satisfactorily.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom