Structural Studies by Stepwise Enzymatic Degradation of the Main Backbone of Soybean Soluble Polysaccharides Consisting of Galacturonan and Rhamnogalacturonan
Author(s) -
Akihiro Nakamura,
Hitoshi Furuta,
Hirokazu Maeda,
Toshifumi Takao,
Yasunori Nagamatsu
Publication year - 2002
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.66.1301
Subject(s) - galactan , rhamnose , pectin , chemistry , arabinose , polysaccharide , backbone chain , xylose , side chain , degree of polymerization , pectinase , chemical structure , biochemistry , stereochemistry , polymerization , enzyme , organic chemistry , polymer , fermentation
Soybean soluble polysaccharides (SSPS) extracted from soybean cotyledons are acidic polysaccharides and have a pectin-like structure. The results of a structural analysis of SSPS by using polygalacturonase (PGase) and rhamnogalacturonase (RGase) clarified that the main backbone consisted of galacturonan (GN) and rhamnogalacturonan (RG), which were composed of the diglycosyl repeating unit, -4)-alpha-D-GalpA-(1-->2)-alpha-L-Rhap-(1-. The side chains of beta-1,4-galactans, branched with fucose and arabinose residues, were linked to the C-4 side of rhamnose residues in the RG regions. The degree of polymerization (dps) of GN, which linked the RG regions together, was estimated to be about 4-10 residues, and some were modified with xylose residues on the C-3 side of the galacturonates. The dps of GN at the reducing end of SSPS was estimated to be about 7-9 residues. Moreover, the fragment of the basic structure of the RG region, -[4)-alpha-D-GalpA-(1-->2)-alpha-L-Rhap-(1-]2-, some of which had long-chain beta-1,4-galactans branched on the C-4 side of rhamnose residues, were liberated from SSPS by the RGase treatment. The dps of the galactan side chain was estimated to be about 43-47 residues by an analysis of the digestion products from the beta-galactosidase treatment.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom