z-logo
open-access-imgOpen Access
Immunochemical and Mutational Analyses of P-type ATPase Spf1p Involved in the Yeast Secretory Pathway
Author(s) -
Chise Suzuki
Publication year - 2001
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.65.2405
Subject(s) - tunicamycin , biology , glycosylation , yeast , secretory pathway , mutant , secretory protein , biochemistry , cell fractionation , phenotype , saccharomyces cerevisiae , phosphorylation , golgi apparatus , gene , microbiology and biotechnology , endoplasmic reticulum , enzyme , unfolded protein response
The yeast SPF1 gene encodes a novel P-type ATPase, the substrate of which specificity has not been identified. It is required for sensitivity to SMKT, a killer toxin produced by the halotolerant yeast Pichia farinosa. To investigate the function of Spf1p, Asp487, the putative phosphorylation site of Spf1p, was replaced by Asn. Expression of the altered SPF1, with Asp487 replaced by Asn, did not suppress the SMKT-resistant phenotype of spf1 mutants, suggesting that the catalytic activity of this ATPase is required for acquisition of sensitivity to SMKT. Subcellular fractionation experiments indicated that the fractionation pattern of Spf1p was similar to that of an early Golgi protein, Och1p. Cells lacking Spf1p had an abnormal fractionation pattern of Sec12p. The spf1 disruptant also showed increased expression of Kar2p and sensitivity to tunicamycin. The glycosylation-defective phenotype and possible role of Spf1p in the secretory pathway are discussed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom