Influence of α-Helices on the Emulsifying Properties of Proteins
Author(s) -
Simon Poon,
Adrienne E. Clarke,
Graeme Currie,
Carolyn J. Schultz
Publication year - 2001
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.65.1713
Subject(s) - cyanogen bromide , peptide , chemistry , molecule , amphiphile , cleavage (geology) , sequence (biology) , hydrophobic effect , peptide sequence , stereochemistry , crystallography , biochemistry , organic chemistry , materials science , polymer , copolymer , gene , fracture (geology) , composite material
A peptide derived from apomyoglobin by cyanogen bromide cleavage was found to be an active emulsifier. This molecule, peptide 1-55, has two potential amphipathic alpha-helices and a hydrophilic C-terminal domain. The importance of each of these domains to the emulsifying properties of this molecule was investigated by testing the products of gene constructs based on the sequence of peptide 1-55, but lacking one of the three domains. The emulsifying activity of the peptides lacking either of the alpha-helices was correlated with the hydrophobic moments of their respective helices. The hydrophobic moment is a measure of the amphipathicity of alpha-helices; a hydrophobic moment analysis of other emulsifying peptides supports the hypothesis that a high hydrophobic moment contributes to good emulsifying properties in a molecule which contains alpha-helices.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom