z-logo
open-access-imgOpen Access
An Efficient Method for Production of Uridine 5′-Diphospho-N-Acetylglucosamine
Author(s) -
Kiyoshi Okuyama,
Tomoki Hamamoto,
Kazuya Ishige,
Kenji TAKENOUCHI,
Toshitada Noguchi
Publication year - 2000
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.64.386
Subject(s) - n acetylglucosamine , chemistry , biochemistry , glucosamine , bacillus subtilis , uridine , uridine diphosphate , enzyme , mutase , yeast , yield (engineering) , biosynthesis , acetylglucosamine , gene , biology , bacteria , rna , materials science , metallurgy , genetics
Uridine 5'-diphospho-N-acetylglucosamine (UDP-GlcNAc) has been synthesized by a yeast-based method from 5'-UMP and glucosamine, in which yeast cells catalyze the conversion of 5'-UMP to 5'-UTP and provide enzymes involved in UDP-GlcNAc synthesis using 5'-UTP and glucosamine as substrates. However, this conventional method is not suitable for practical production of UDP-GlcNAc because of the low yield of the product. We found that the yqgR gene product of Bacillus subtilis, which has been identified as a glucokinase, can catalyze the phosphorylation of N-acetylglucosamine (GlcNAc) to give GlcNAc-6-phosphate, an intermediate of UDP-GlcNAc biosynthesis. The addition of the yqgR gene product to the yeast-based reaction system enabled us to synthesize UDP-GlcNAc using GlcNAc in place of glucosamine. The addition of two enzymes, GlcNAc-phosphate mutase and UDP-GlcNAc pyrophosphorylase, increased the yield of UDP-GlcNAc. Using this novel method, UDP-GlcNAc was produced at an amount of 78 mM from 100 mM 5'-UMP and 100 mM GlcNAc.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom