z-logo
open-access-imgOpen Access
Effects of pH and Light on the Storage Stability of the Purple Pigment, Hordeumin, from Uncooked Barley Bran Fermented Broth
Author(s) -
Tomoaki DEGUCHI,
Shuji SHOHARA,
Riichiro Ohba,
Seinosuke Ueda
Publication year - 2000
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.64.2236
Subject(s) - anthocyanidins , pigment , chemistry , anthocyanidin , anthocyanin , tannin , delphinidin , food science , chromatography , cyanidin , polyphenol , biochemistry , organic chemistry , antioxidant
The pigment retention rate of hordeumin was higher than that of two standard anthocyanidins, cyanidin and delphinidin, when hordeumin and anthocyanidins were dissolved in Walpole buffer (pH 1.0) and stored. Moreover, when pigment solutions were stored at 15 degrees C under light irradiation, the pigment retention rate of the hordeumin solution became higher than those of standard anthocyanidins (2 to 10 times) as the storage period increased. Comparing various pH buffers (MacIlvaine buffer, pH 2.2 to 7.0), the pigment retention rate of hordeumin at pH 5.0 was highest. Furthermore, the half-life of hordeumin at pH 5.0 was increased from 9 days to 17.5 days when nitrogen gas was bubbled into the hordeumin solution. We considered that the storage stability of hordeumin is higher than standard anthocyanidins because hordeumin is a complex with anthocyanin, tannin, and protein.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom