Hydrolysis of β-Galactosyl Ester Linkage by β-Galactosidases
Author(s) -
Taro Kiso,
Hirofumi Nakano,
Hirofumi NAKAJIMA,
Tadamasa Terai,
Katsuyuki Okamoto,
Sumio Kitahata
Publication year - 2000
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.64.1702
Subject(s) - bacillus circulans , hydrolysis , chemistry , beta galactosidase , galactoside , galactose , galactosidases , enzyme , substrate (aquarium) , stereochemistry , biochemistry , aspergillus oryzae , escherichia coli , organic chemistry , biology , ecology , gene
p-Hydroxybenzoyl beta-galactose (pHB-Gal) was synthesized chemically to examine the hydrolytic activity of beta-galactosyl ester linkage by beta-galactosidases. The enzyme from Penicillium multicolor hydrolyzed the substrate as fast as p-nitrophenyl beta-galactoside (pNP-Gal), a usual substrate with a beta-galactosidic linkage. The enzymes from Escherichia coli and Aspergillus oryzae hydrolyzed pHB-Gal with almost the same rates as pNP-Gal. The enzymes from Bacillus circulans, Saccharomyces fragilis, and bovine liver showed much lower activities. pH-activity profiles, inhibition analysis, and kinetic properties of the enzymic reaction on pHB-Gal suggested that beta-galactosidase had only one active site for hydrolysis of both galactosyl ester and galactoside. The Penicillium enzyme hydrolyzed pHB-Gal in the presence of H218O to liberate galactose containing 18O. This result suggests the degradation occurs between the anomeric carbon and an adjacent O atom in the ester linkage of pHB-Gal.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom