Cloning of a Gene Encoding Hydroxyquinol 1,2-Dioxygenase that Catalyzes Both Intradiol and Extradiol Ring Cleavage of Catechol
Author(s) -
Shuichiro Murakami,
Takao Okuno,
Eitaro Matsumura,
Shinji Takenaka,
Ryu Shinke,
Kenji Aoki
Publication year - 1999
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.63.859
Subject(s) - dioxygenase , catechol , stereochemistry , chemistry , open reading frame , enzyme , biochemistry , peptide sequence , gene
Two Escherichia coli transformants with catechol 1,2-dioxygenase activity were selected from a gene library of the benzamide-assimilating bacterium Arthrobacter species strain BA-5-17, which produces four catechol 1,2-dioxygenase isozymes. A DNA fragment isolated from one transformant contained a complete open reading frame (ORF). The deduced amino acid sequence of the ORF shared high identity with hydroxyquinol 1,2-dioxygenase. An enzyme expressed by the ORF was purified to homogeneity and characterized. When hydroxyquinol was used as a substrate, the purified enzyme showed 6.8-fold activity of that for catechol. On the basis of the sequence identity and substrate specificity of the enzyme, we concluded that the ORF encoded hydroxyquinol 1,2-dioxygenase. When catechol was used as a substrate, cis,cis-muconic acid and 2-hydroxymuconic 6-semialdehyde, which were products by the intradiol and extradiol ring cleavage activities, respectively, were produced. These results showed that the hydroxyquinol 1,2-dioxygenase reported here was a novel dioxygenase that catalyzed both the intradiol and extradiol cleavage of catechol.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom