z-logo
open-access-imgOpen Access
Cloning and Sequence Analysis of the Gene for Glucodextranase fromArthrobacter globiformisT-3044 and Expression inEscherichia coliCells
Author(s) -
Tetsuya Oguma,
Toshiko Kurokawa,
Kouichiro Tobe,
Satoshi Kitao,
Mikihiko Kobayashi
Publication year - 1999
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.63.2174
Subject(s) - microbiology and biotechnology , escherichia coli , peptide sequence , molecular cloning , gene , amino acid , enzyme , open reading frame , biochemistry , biology , cloning (programming) , nucleic acid sequence , molecular mass , plasmid , signal peptide , sequence analysis , computer science , programming language
The gld gene for glucodextranase from Arthrobacter globiformis T-3044 was cloned by using a combination of gene walking and probe methods and expressed on the recombinant plasmid pGD8, which was constructed with pUC118, in Escherichia coli cells. The enzyme gene consisted of a unique open reading frame of 3,153 bp. The comparison of the DNA sequence data with the N-terminal and 6 internal amino acid sequences of the purified enzyme secreted from A. globiformis T-3044 suggested the enzyme was translated from mRNA as a secretory precursor with a signal peptide of 28 amino acids residues. The deduced amino acids sequence of the mature enzyme contained 1,023 residues, resulting in a polypeptide with a molecular mass of 107,475 daltons. The deduced sequence showed about 38% identity to that of the glucoamylase from Clostridium sp. G0005. The glucodextranase activity of transformant harboring pGD8 was about 40 mU/ml at 30 degrees C for a 16-h culture. Although the GDase that was produced from the transformant was shorter than authentic GDase by 2 amino acid residues at the N-terminal end side, its enzymatic properties were almost same as the authentic one. Two kinds of genes, dex1 and dex2, for endo-dextranases from A. globiformis T-3044 were also cloned into Escherichia coli cells. The N-terminal of the purified endo-dextranase from A. globiformis T-3044 agreed with the deduced amino acid sequence, after the 33rd alanine residue, of only the dex1 gene for edo-dextranase. This result suggests that the endo-dextranase is translated from mRNA as a secretory precursor with a signal peptide of 32 amino acids residues. The deduced sequence of endo-dextranase 1 and endo-dextranase 2 showed about 93% and 65% identity with that of known endo-dextranase from Arthrobacter sp. CB-8, respectively.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom