z-logo
open-access-imgOpen Access
Production of Ethyl (R)-2-Hydroxy-4-phenylbutanoateviaReduction of Ethyl 2-Oxo-4-phenylbutanoate in an Interface Bioreactor
Author(s) -
Shinobu Oda,
Yūichi Inada,
Atsuko Kobayashi,
Hiromichi Ohta
Publication year - 1998
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.62.1762
Subject(s) - bioreactor , chromatography , enantiomeric excess , methanol , chemistry , extraction (chemistry) , enantiomer , yield (engineering) , incubation , ethyl acetate , stereochemistry , organic chemistry , catalysis , enantioselective synthesis , materials science , biochemistry , metallurgy
Ethyl (R)-2-hydroxy-4-phenylbutanoate [(R)-EHPB], a useful intermediate for the synthesis of various anti-hypertension drugs, was produced via microbial reduction of ethyl 2-oxo-4-phenylbutanoate [EOPB] in an interface bioreactor. Rhodotorula minuta IFO 0920 and Candida holmii KPY 12402 were selected as the best type culture and isolated yeasts, respectively. The highest enantiomeric excess of (R)-EHPB produced by R. minuta and C. holmii were 95 and 94%, respectively. C. holmii was used for the reduction of EOPB in a pad-packed interface bioreactor (inner volume, 3 liter). After incubation for 4 days, 4.4 g of (R)-EHPB was obtained via extraction with methanol followed by column chromatography. The overall yield, chemical purity, and enantiomeric excess of (R)-EHPB were 58%, 99.1%, and 90%, respectively.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom