Production of Ethyl (R)-2-Hydroxy-4-phenylbutanoateviaReduction of Ethyl 2-Oxo-4-phenylbutanoate in an Interface Bioreactor
Author(s) -
Shinobu Oda,
Yūichi Inada,
Atsuko Kobayashi,
Hiromichi Ohta
Publication year - 1998
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.62.1762
Subject(s) - bioreactor , chromatography , enantiomeric excess , methanol , chemistry , extraction (chemistry) , enantiomer , yield (engineering) , incubation , ethyl acetate , stereochemistry , organic chemistry , catalysis , enantioselective synthesis , materials science , biochemistry , metallurgy
Ethyl (R)-2-hydroxy-4-phenylbutanoate [(R)-EHPB], a useful intermediate for the synthesis of various anti-hypertension drugs, was produced via microbial reduction of ethyl 2-oxo-4-phenylbutanoate [EOPB] in an interface bioreactor. Rhodotorula minuta IFO 0920 and Candida holmii KPY 12402 were selected as the best type culture and isolated yeasts, respectively. The highest enantiomeric excess of (R)-EHPB produced by R. minuta and C. holmii were 95 and 94%, respectively. C. holmii was used for the reduction of EOPB in a pad-packed interface bioreactor (inner volume, 3 liter). After incubation for 4 days, 4.4 g of (R)-EHPB was obtained via extraction with methanol followed by column chromatography. The overall yield, chemical purity, and enantiomeric excess of (R)-EHPB were 58%, 99.1%, and 90%, respectively.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom