z-logo
open-access-imgOpen Access
The Last Twenty Residues in the Head Domain of Mouse Lamin A Contain Important Structural Elements for Formation of Head-to-Tail Polymersin Vitro
Author(s) -
Kazuhiro Isobe,
Rumi Gohara,
Toshihisa Ueda,
Yozo Takasaki,
Shoji Ando
Publication year - 2007
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.60674
Subject(s) - lamin , mutant , biology , egf like domain , biochemistry , chemistry , peptide sequence , microbiology and biotechnology , biophysics , gene
Nuclear lamins are a type of intermediate filament (IF) proteins. They have a characteristic tripartite domain structure with a alpha-helical rod domain flanked by non-alpha-helical N-terminal head and C-terminal tail domains. While the head domain has been shown to be important for the formation of head-to-tail polymers that are critical assembly intermediates for lamin IFs, essential structural elements in this domain have remained obscure. As a first step to remedy this, a series of mouse lamin A mutants in which the head domain (30 amino acid residues) was deleted stepwise from the N-terminus at intervals of 10 residues were bacterially expressed. The assembly properties in vitro of the purified recombinant proteins were explored by electron microscopy. We observed that while a lamin A mutant lacking N-terminal 10 residues formed head-to-tail polymers, a mutant lacking N-terminal 20 residues or the whole head domain (30 residues) showed significantly decreased potency to form head-to-tail polymers. These results suggest that the last 20 residues (from Arg-11 to Gln-30) of the head domain of mouse lamin A contain essential structures for the formation of head-to-tail polymers. The last 20 residues of the head domain include several conserved residues between A- and B-type lamins and also the phosphorylation site for cdc2 kinase, which affects lamin IF organization in vivo and in vitro. Our results provide clues to the molecular mechanism by which the head domain plays a crucial role in lamin polymerization.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom