z-logo
open-access-imgOpen Access
Changes in Components, Glycyrrhizin and Glycyrrhetinic Acid, in RawGlycyrrhiza uralensisFisch, Modify Insulin Sensitizing and Insulinotropic Actions
Author(s) -
ByoungSeob Ko,
Jin Sun Jang,
Sang Mee Hong,
So Ra Sung,
Ji Eun Lee,
Mi Young Lee,
Won Kyung Jeon,
Sunmin Park
Publication year - 2007
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.60533
Subject(s) - glycyrrhizin , glycyrrhiza uralensis , insulin , medicine , endocrinology , chemistry , glucokinase , glut2 , pharmacology , glucose transporter , biology , alternative medicine , pathology
We hypothesized that roasted Glycyrrhizae Radix (Glycyrrhizin Radix Praeparata, GRP) might modify anti-diabetic action due to compositional changes. Then we examined the anti-diabetic effect and mechanism of raw Glycyrrhizae Radix (GR) and GRP extracts and their major respective components, glycyrrhizin and glycyrrhetinic acid. In partial pancreatectomized (Px) diabetic mice, both GR and GRP improved glucose tolerance, but only GRP enhanced glucose-stimulated insulin secretion as much as exendin-4. Both GR and GRP extracts enhanced insulin-stimulated glucose uptake through peroxisome proliferation-activated receptor (PPAR)-gamma activation in 3T3-L1 adipocytes. Consistently with the results of the mice study, only GRP and glycyrrhetinic acid enhanced glucose-stimulated insulin secretion in isolated islets. In addition, they induced mRNA levels of insulin receptor substrate-2, pancreas duodenum homeobox-1, and glucokinase in the islets, which contributed to improving beta-cell viability. In conclusion, GRP extract containing glycyrrhetinic acid improved glucose tolerance better than GR extract by enhancing insulinotropic action. Thus, GRP had better anti-diabetic action than GR.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom