High Shikimate Production from Quinate with Two Enzymatic Systems of Acetic Acid Bacteria
Author(s) -
Osao Adachi,
Yoshitaka Ano,
Hirohide Toyama,
Kazunobu Matsushita
Publication year - 2006
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.60259
Subject(s) - dehydratase , acetic acid bacteria , biochemistry , chemistry , dehydrogenase , enzyme , acetic acid , yield (engineering) , bacteria , biology , materials science , metallurgy , genetics
3-Dehydroshikimate was formed with a yield of 57-77% from quinate via 3-dehydroquinate by two successive enzyme reactions, quinoprotein quinate dehydrogenase (QDH) and 3-dehydroquinate dehydratase, in the cytoplasmic membranes of acetic acid bacteria. 3-Dehydroshikimate was then reduced to shikimate (SKA) with NADP-dependent SKA dehydrogenase (SKDH) from the same organism. When SKDH was coupled with NADP-dependent D-glucose dehydrogenase (GDH) in the presence of excess D-glucose as an NADPH re-generating system, SKDH continued to produce SKA until 3-dehydroshikimate added initially in the reaction mixture was completely converted to SKA. Based on the data presented, a strategy for high SKA production was proposed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom