Improvement of Dibenzothiophene Desulfurization Activity by Removing the Gene Overlap in thedszOperon
Author(s) -
Guoqiang Li,
Ting Ma,
Shanshan Li,
Hong Li,
Feng-lai Liang,
Rulin Liu
Publication year - 2007
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.60189
Subject(s) - operon , dibenzothiophene , lac operon , gene , biology , rhodococcus , microbiology and biotechnology , enzyme , genetics , gene expression , biochemistry , escherichia coli , catalysis
Dibenzothiophene (DBT) and its derivatives can be microbially desulfurized by Dsz enzymes. We investigated the expressional characteristics of the dsz operon. The result revealed that the ratio of mRNA quantity of dszA, dszB, and dszC was 11:3.3:1; however, western blot analysis indicated that the expression level of dszB is far lower than that of dszC. Gene analysis revealed that the termination codon of dszA and the initiation codon of dszB overlapped, whereas there was a 13-bp gap between dszB and dszC. In order to get a better, steady expression of DszB, we removed this structure by overlap polymerase chain reaction (PCR) and expressed the redesigned dsz operon in Rhodococcus erythropolis. The desulfurization activity of resting cells prepared from R. erythropolis DR-2, which held the redesigned dsz operon, was about five-fold higher than that of R. erythropolis DR-1, which held the original dsz operon.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom