z-logo
open-access-imgOpen Access
Oxidative Stress Induces Phosphoenolpyruvate Carboxykinase Expression in H4IIE Cells
Author(s) -
Yoshiaki Ito,
Saori OUMI,
Takashi Nagasawa,
Naoyuki NISHIZAWA
Publication year - 2006
Publication title -
bioscience biotechnology and biochemistry
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.60135
Subject(s) - phosphoenolpyruvate carboxykinase , oxidative stress , endocrinology , insulin , medicine , buthionine sulfoximine , gluconeogenesis , oxidative phosphorylation , biology , chemistry , glutathione , metabolism , biochemistry , enzyme
Oxidative stress is closely associated with diabetes and is a major cause of insulin resistance. Impairment of hepatic insulin action is thought to be responsible for perturbations in hepatic glucose metabolism. In this study, we found that oxidative stress is involved in the dysregulation of gene expression of phosphoenolpyruvate carboxykinase (PEPCK), a key gluconeogenic enzyme, by a mechanism independent of insulin. Elevation of oxidative stress by injection of ferric nitrilotriacetate in rats increased the expression of hepatic PEPCK mRNA. To examine the direct action of oxidative stress on PEPCK expression, we treated H4IIE hepatoma cells with buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis. BSO increased intracellular oxidative stress and the expression of PEPCK mRNA. Inhibition of p38 mitogen-activated protein kinase (p38 MAP kinase), which mediates responses to oxidative stress, suppressed the induction of PEPCK mRNA by BSO. These results suggest that oxidative stress dysregulates hepatic PEPCK expression by an insulin-independent mechanism.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom