Synthesis of Neohesperidin Glycosides and Naringin Glycosides by Cyclodextrin Glucano-transferase from an AlkalophilicBacillusSpecies
Author(s) -
Takashi Kometani,
Takahisa Nishimura,
Takashi Nakae,
Hiroshi Takii,
Shigetaka Okada
Publication year - 1996
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.60.645
Subject(s) - glycoside , naringin , chemistry , cyclodextrin , starch , glucoside , chromatography , biochemistry , organic chemistry , medicine , alternative medicine , pathology
Cyclodextrin glucanotransferase from an alkalophilic Bacillus species produced neohesperidin monoglucoside and a series of its maltooligoglucosides by transglycosylation with neohesperidin as an acceptor and soluble starch as a donor. As the reaction using beta-CD as a donor at an alkaline pH was very effective for solubilizing neohesperidin, the amount of glycosides formed was increased. As a result, its amount with beta-CD at pH 10 was about 7 times greater than that with soluble starch at pH 5. Neohesperidin monoglucoside was purified from the reaction mixture by glucoamylase and naringinase treatments, an Amberlite XAD-16 column, a Sephadex LH20 column, and HPLC on an ODS column. The structure of the purified monoglucoside was identified as 3G-alpha-D-glucopyranosyl neohesperidin by FAB-MS, methylation analysis, and 1H- and 13C-NMR. The solubility of neohesperidin monoglucoside in water was approximately 1500 times higher than that of neohesperidin, and the bitterness of the monoglucoside was about 10 times less than that of neophesperidin. In addition, naringin was also glycosylated by the same method as neohesperidin, and its monoglucoside was identified as 3G-alpha-D-glucopyranosyl naringin. The solubility of naringin monoglucoside in water was also at least 1000 times higher than that of naringin without altering its bitterness.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom