Purification and Properties of Bile Acid Sulfate Sulfatase fromPseudomonas testosteroni
Author(s) -
Yasuhiko Tazuke,
Kumiko Matsuda,
Kenichi Adachi,
Yoji Tsukada
Publication year - 1994
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.58.889
Subject(s) - chemistry , thermostability , chromatofocusing , biochemistry , enzyme , bile acid , molecular mass , hydrolysis , chromatography , amino acid , sulfatase , isoelectric point
The bile acid sulfate sulfatase (BSS) produced by Pseudomonas testosteroni was purified and characterized. Chromatofocusing behavior and amino acid sequence over twelve amino acid residues from N-terminus of the enzyme indicated that BSS was composed of two isoforms of which molecular weights were 125,000 and 103,000. Each isoform was a homodimer of a subunit of which molecular weight was 53,000 or 51,000, respectively. The optimum pH was 8.5 and BSS was stable at pH 5.8-8.0. The thermostability above 32 degrees C was improved by the addition of polyols, such as sorbitol, sucrose, and glycerol. BSS was a Mn(2+)-dependent enzyme and contained 1-2 atoms of manganese in its own protein molecule. All 3 alpha-sulfate esters of the bile acids routinely appearing in human serum were hydrolyzed by BSS to 3 beta-hydroxyl iso-compounds corresponding to each bile acid and sulfuric acid. We tentatively named this novel enzyme BSS (bile acid 3 alpha-sulfate sulfohydrolase).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom