z-logo
open-access-imgOpen Access
Genetic Organization of Two Types of Flounder Warm-Temperature Acclimation-Associated 65-kDa Protein and Their Gene Expression Profiles
Author(s) -
YoungOk Kim,
EunMi Park,
Ji Young Moon,
BoHye Nam,
DongGyun Kim,
Hee Jeong Kong,
Woo Jin Kim,
YoungJu Jee,
Sangjun Lee
Publication year - 2013
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.130263
Subject(s) - biology , olive flounder , complementary dna , edwardsiella tarda , flounder , gene , gene expression , microbiology and biotechnology , paralichthys , messenger rna , acclimatization , genetics , fish <actinopterygii> , fishery
We isolated and characterized two cDNA clone encoding warm-temperature acclimation-associated 65-kDa proteins (PoWap65-1 and PoWap65-2) from the olive flounder, Paralichthys olivaceus. The deduced amino acid sequences of PoWap65s showed overall identities of 33-73% with other fish Wap65 and mammalian hemopexin-like proteins. The 5'-flanking regions of both PoWap65-encoding genes contained various putative transcriptional elements. While PoWap65-1 and PoWap65-2 were structurally similar, they exhibited highly differential patterns of expression. PoWap65-1 was expressed only in the liver, whereas PoWap65-2 transcripts were detected in a wide range of tissues. The accumulation of PoWap65s mRNA was expressed differentially during development. Expression of them in warm temperatures also differed in flounder embryonic cells. PoWap65-1 was upregulated by temperature stimulation whereas PoWap65-2 was not detected. PoWap65s were highly regulated by Edwardsiella tarda infection and hypoxia. Pathogen challenge induced PoWap65-2 expression in the liver whereas PoWap65-1 was downregulated. Hypoxia induced the expression of both PoWap65s in the liver of juvenile fish.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom