High Thermal Stability and Unique Trimer Formation of Cytochromec′ from ThermophilicHydrogenophilus thermoluteolus
Author(s) -
Sotaro Fujii,
Misa Masanari,
Hiroki Inoue,
Masaru Yamanaka,
Satoshi Wakai,
Hirofumi Nishihara,
Yoshihiro Sambongi
Publication year - 2013
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.130226
Subject(s) - thermophile , trimer , cytochrome , denaturation (fissile materials) , cytochrome c , chemistry , crystallography , stereochemistry , biochemistry , dimer , organic chemistry , enzyme , mitochondrion , nuclear chemistry
Sequence analysis indicated that thermophilic Hydrogenophilus thermoluteolus cytochrome c' (PHCP) and its mesophilic homolog, Allochromatium vinosum cytochrome c' (AVCP), closely resemble each other in a phylogenetic tree of the cytochrome c' family, with 55% sequence identity. The denaturation temperature of PHCP was 87 °C, 35 °C higher than that of AVCP. Furthermore, PHCP exhibited a larger enthalpy change value during its thermal denaturation than AVCP. While AVCP was dimeric, as observed previously, PHCP was trimeric, and this was the first observation as a cytochrome c'. Dissociation of trimeric PHCP and its protein denaturation reversibly occurred at the same time in a two-state transition manner. Therefore, PHCP is enthalpically more stable than AVCP, perhaps due to its unique trimeric form, in addition to the lower number of Gly residues in its putative α-helical regions.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom