z-logo
open-access-imgOpen Access
Differences in the Roles of a Glutamine Amidotransferase Subunit of Pyridoxal 5'-Phosphate Synthase betweenBacillus circulansandBacillus subtilis
Author(s) -
Shiori ITAGAKI,
Minami HAGA,
Yuji Oikawa,
Ayaka Sakoda,
Yoshie OHKE,
Hiroshi Sawada,
Tadashi Eguchi,
Hideyuki Tamegai
Publication year - 2013
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.130132
Subject(s) - glutamine amidotransferase , bacillus circulans , bacillus subtilis , biochemistry , pyridoxal , protein subunit , atp synthase , pyridoxal phosphate , biosynthesis , enzyme , glutamate synthase , complementation , acetolactate synthase , operon , chemistry , biology , glutamine , glutamine synthetase , bacteria , escherichia coli , genetics , cofactor , phenotype , gene , amino acid
BtrC2 of the butirosin producer Bacillus circulans is a non-catalytic subunit of 2-deoxy-scyllo-inosose (DOI) synthase that is involved in butirosin biosynthesis, and also a homolog of glutamine amidotransferase subunit (PdxT) of pyridoxal 5'-phosphate (PLP) synthase of Bacillus subtilis. BtrC2 has been found to have functions in B. circulans both in primary and secondary metabolism. In this study, we investigated the properties of PdxT of B. subtilis in order to determine whether the property of enzyme stabilization is universal among PdxT homologs. Complementation with PdxT in the btrC2 disruptant of B. circulans restored the growth and short-term production of antibiotics, but long-term production of antibiotics cannot be restored. Additionally, PdxT did not bind physically with or stabilize BtrC. Our results indicate that the function of BtrC2 in secondary metabolism is specific properties, not universal among PdxT homologs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom