z-logo
open-access-imgOpen Access
Gene Cloning and Characterization ofL-Ribulose 3-epimerase fromMesorhizobium lotiand Its Application to Rare Sugar Production
Author(s) -
Keiko Uechi,
Goro Takata,
Yoshinori Fukai,
Akihide Yoshihara,
Kenji Morimoto
Publication year - 2013
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.120745
Subject(s) - ribulose , chemistry , ketose , pentose , biochemistry , enzyme , ribitol , isomerase , xylose , yield (engineering) , stereochemistry , rubisco , fermentation , aldose , materials science , glycoside , metallurgy
A gene encoding L-ribulose 3-epimerase (L-RE) from Mesorhizobium loti, an important enzyme for rare sugar production by the Izumoring strategy, was cloned and overexpressed. The enzyme showed highest activity toward L-ribulose (230 U/mg) among keto-pentoses and keto-hexoses. This is the first report on a ketose 3-epimerase showing highest activity toward keto-pentose. The optimum enzyme reaction conditions for L-RE were determined to be sodium phosphate buffer (pH 8.0) at 60 °C. The enzyme showed of higher maximum reaction a rate (416 U/mg) and catalytic efficiency (43 M(-1) min(-1)) for L-ribulose than other known ketose 3-epimerases. It was able to produce L-xylulose efficiently from ribitol in two-step reactions. In the end, 7.2 g of L-xylulose was obtained from 20 g of ribitol via L-ribulose at a yield of 36%.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom