Facile Synthesis of 4-O-β-N-Acetylchitooligosyl 2-acetamido-2,3-dideoxydidehydro-gluconolactone Based on the Transformation of Chitooligosaccharide and Its Suppressive Effects against the Furylfuramide-Induced SOS Response
Author(s) -
Makoto Ogata,
Ryota Takeuchi,
Akari Suzuki,
Hirofumi Hirai,
Taichi Usui
Publication year - 2012
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.120119
Subject(s) - chemistry , sos response , lactone , residue (chemistry) , stereochemistry , mutagen , nitro , combinatorial chemistry , organic chemistry , biochemistry , escherichia coli , gene , dna , alkyl
A facile synthesis method is described for transforming the reducing-end residue of chitooligosaccharides (DP 2-4) into lactone. The desired 4-O-β-N-acetylchitooligosyl lactones (GN(n)L) were conveniently prepared from chitooligosaccharides by consecutive dehydration and oxidation reactions to afford 4-O-β-tri-N-acetylchitotriosyl 2-acetamido-2,3-dideoxydidehydro-gluconolactone (GN(3)L), 4-O-β-di-N-acetylchitobiosyl 2-acetamido-2,3-dideoxydidehydro-gluconolactone (GN(2)L), and 4-O-β-2-acetamido-2-deoxy-D-glucopyranosyl 2-acetamido-2,3-dideoxydidehydro-gluconolactone (GNL). The resulting lactone derivatives exhibited considerable suppression (42.6-54.3% at a concentration of 400 µM) in umu gene expression of the SOS response in Salmonella typhimurium TA1535/pSK1002 against the mutagen, 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamido (AF-2). Lactonization of the chitooligosaccharides was found to be essential for their suppression of the SOS-inducing activity.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom