z-logo
open-access-imgOpen Access
Detection ofAeromonas salmonicidaby Reverse Transcription-Multiplex Polymerase Chain Reaction
Author(s) -
Pongsak Rattanachaikunsopon,
Parichat Phumkhachorn
Publication year - 2012
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.110744
Subject(s) - aeromonas salmonicida , biology , multiplex , polymerase chain reaction , multiplex polymerase chain reaction , microbiology and biotechnology , dna , gene , reverse transcription polymerase chain reaction , virology , gene expression , bacteria , genetics
Aeromonas salmonicida is one of the major fish pathogens causing economically devastating losses in aquaculture. A. salmonicida subsp. salmonicida is a typical A. salmonicida causing furunculosis, while the other subspecies are atypical strains causing ulcer diseases. PCR-based methods of detecting A. salmonicida suffer from the drawback that they do not distinguish living (pathogenic) from dead cells. In this study, a method of detecting A. salmonicida was developed based on reverse transcription-multiplex PCR (RT-MPCR) using two sets of primers, SV1/SV2 and SF1/SF2, specific to the vapA gene and the fstB gene of A. salmonicida respectively. This method was found to detect A. salmonicida specifically with detection limits of 10 CFU in pure culture and 30 CFU in the presence of tissue debris. It was also found distinguish not only between viable and nonviable cells but also between typical and atypical strains of A. salmonicida. Using RT-MPCR, two DNA fragments, of 542 and 1,258 bp, were amplified from RNA of typical A. salmonicida, whereas only one DNA fragment, of 542 bp, was amplified from the RNA of the atypical ones. The proposed assay was also used successfully to detect A. salmonicida in artificially infected rainbow trout (Oncorhyncus mykiss).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom