Effects of Magnesium Sulfate on the Luminescence ofVibrio fischeriunder Nutrient-Starved Conditions
Author(s) -
Yosuke Tabei,
Mariko Era,
Akane Ogawa,
Hiroshi Morita
Publication year - 2011
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.100880
Subject(s) - luminescence , vibrio , magnesium , sulfur , artificial seawater , seawater , bioluminescence , chemistry , quorum sensing , biology , biochemistry , bacteria , materials science , ecology , organic chemistry , optoelectronics , genetics , virulence , gene
In this study, we investigated the relationship between MgSO(4) and luminescence in Vibrio fischeri under nutrient-starved conditions. When V. fischeri was cultured in an artificial seawater medium, the luminescence intensity was low relative to that observed under normal growth conditions. It decreased during the initial 14 h, and then increased slightly at 24 h. This regulation of luminescence was not dependent on the quorum-sensing mechanism, because the cell densities had not reached a critical threshold concentration. Under MgSO(4)-starved conditions, luminescence was not fully induced at 14 h, and decreased at 24 h. In contrast, induction of luminescence occurred under MgSO(4)-supplemented conditions, but MgSO(4) alone was insufficient to induce luminescence, and required NaHCO(3) or KCl. These results suggest that the luminescence of V. fischeri is controlled by an exogenous sulfur source under nutrient-starved conditions. In addition, they indicate that the induction of sulfur-dependent luminescence is regulated by the NaHCO(3) or KCl concentration.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom