z-logo
open-access-imgOpen Access
Development of a Novel PPARγ Ligand Screening System Using Pinpoint Fluorescence-Probed Protein
Author(s) -
Hiroyuki Nagai,
Shogo Ebisu,
Ryoji Abe,
Tsuyoshi Goto,
Nobuyuki Takahashi,
Takahiro Hosaka,
Teruo Kawada
Publication year - 2011
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.100810
Subject(s) - fluorescence anisotropy , activator (genetics) , chemistry , fluorescence , peroxisome proliferator activated receptor , receptor , ligand (biochemistry) , ligand binding assay , troglitazone , rosiglitazone , luciferase , biophysics , biochemistry , biology , transfection , gene , physics , quantum mechanics , membrane
The activation of peroxisome-proliferator-activated receptor-γ (PPARγ), which plays a central role in adipocyte differentiation, depends on ligand-dependent co-activator recruitment. In this study, we developed a novel method of PPARγ ligand screening by measuring the increase in fluorescent polarization accompanied by the interaction of a fluorescent co-activator and PPARγ. Sterol receptor co-activator-1 (SRC-1), a major PPARγ co-activator, was probed by fluorescent TAMRA by the Amber codon fluorescence probe method. Polarization was increased by adding PPARγ ligands to a solution containing labeled SRC-1 (designated TAMRA-SRC-S) and PPARγ. The disassociation constants (Kd) of the PPARγ synthesized ligands, pioglitazone (221 nM), troglitazone (83.0 nM), and 15-deoxy-Δ12,14-prostaglandin J(2) (15d-ΔPGJ(2)) (156 nM), were determined by this method. Farnesol (2.89 µM) and bixin (21.1 µM), which we have reported to be PPARγ ligands, increased the fluorescent polarization. Their Kd values were in agreement with the ED(50) values obtained in the luciferase assay. The results indicate that the method is valuable for screening natural PPARγ ligands.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom