The Role of the Disulfide Bridge in the Stability and Structural Integrity of Ovalbumin Evaluated by Site-Directed Mutagenesis
Author(s) -
Takayuki Ishimaru,
Kazunari Ito,
Miho Tanaka,
Syunpei TANAKA,
Naotoshi Matsudomi
Publication year - 2011
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.100772
Subject(s) - thermostability , ovalbumin , chemistry , circular dichroism , structural integrity , mutant , mutagenesis , biophysics , elastase , denaturation (fissile materials) , wild type , disulfide bond , stereochemistry , biochemistry , enzyme , biology , genetics , gene , antigen , structural engineering , nuclear chemistry , engineering
To provide a molecular explanation of the role of the disulfide (SS) bridge in the thermostability and structural integrity of ovalbumin (OVA), we prepared SS-mutated OVAs in which SS-forming residues were replaced by Ala or Ser (C73A, C73S, C120A, and C73/120A), and compared the conformation, thermostability, susceptibility to elastase, and formation of heat-stable OVA (S-OVA) with those of the wild-type. The circular dichroism (CD) and tryptophan fluorescence spectra revealed that the SS-mutated OVAs assumed a native-like conformation similar to the wild-type. The thermal denaturation temperature for the SS-mutated OVAs was significantly lower than that for the wild-type. C73S, C120A, and C73/120A mutants converted to S-OVA on alkaline treatment. Analyses for elastase digestion fragments showed that a non-native SS bridge was generated in all SS-mutated OVAs, but non-native SS-pairing did not contribute to thermostability. Hence, we concluded that the presence of the original SS bridge in OVA contributes to conformational stability but is not directly related to the conversion to S-OVA.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom