z-logo
open-access-imgOpen Access
Human Serum Albumin as an Antioxidant in the Oxidation of (−)-Epigallocatechin Gallate: Participation of Reversible Covalent Binding for Interaction and Stabilization
Author(s) -
Takeshi Ishii,
Tatsuya Ichikawa,
Kanako Minoda,
Koji Kusaka,
Sohei Ito,
Yukiko Suzuki,
Mitsugu Akagawa,
Kazuki Mochizuki,
Toshinao Goda,
Tsutomu Nakayama
Publication year - 2011
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.100600
Subject(s) - human serum albumin , chemistry , epigallocatechin gallate , covalent bond , moiety , gallate , antioxidant , bovine serum albumin , serum albumin , biochemistry , chromatography , polymer chemistry , organic chemistry , polyphenol , nuclear chemistry
Human serum albumin (HSA) contributes to the stabilization of (-)-epigallocatechin gallate (EGCg) in serum. We characterize in the present study the mechanisms for preventing EGCg oxidation by HSA. EGCg was stable in human serum or buffers with HSA, but (-)-epigallocatechin (EGC) was unstable. We show by comparing EGCg and EGC in a neutral buffer that EGCg had a higher binding affinity than EGC. This indicates that the galloyl moiety participated in the interaction of EGCg with HSA and that this interaction was of critical importance in preventing EGCg oxidation. The binding affinity of EGCg for HSA and protein carbonyl formation in HSA were enhanced in an alkaline buffer. These results suggest the reversible covalent modification of EGCg via Schiff-base formation, and that the immobilization of EGCg to HSA, through the formation of a stable complex, prevented the polymerization and decomposition of EGCg in human serum.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom