Behaviour of multivariate tail dependence coefficients
Author(s) -
Gaida Pettere,
Irina Voronova,
Ilze Zariņa
Publication year - 2019
Publication title -
acta et commentationes universitatis tartuensis de mathematica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.276
H-Index - 6
eISSN - 2228-4699
pISSN - 1406-2283
DOI - 10.12697/acutm.2018.22.25
Subject(s) - copula (linguistics) , tail dependence , multivariate statistics , bivariate analysis , econometrics , mathematics , statistical physics , multivariate analysis , statistics , marginal distribution , multivariate t distribution , multivariate normal distribution , physics , random variable
In applications tail dependence is an important property of a copula. Bivariate tail dependence is investigated in many papers, but multivariate tail dependence has not been studied widely. We define multivariate upper and lower tail dependence coefficients as limits of the probability that values of one marginal will be large if at least one of other marginals will be as large also. Further we derive some relations between introduced tail dependence and bivariate tail dependence coefficients. Applications have shown that the multivariate t-copula has been successfully used in practice because of it's tail dependence property. Therefore, t-copula can be used as an alternative method for risk assessment under Solvency II for insurance models. We have paid attention to the properties of the introduced multivariate tail dependence coefficient for t-copula and examine it in the simulation experiment.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom