On estimation of loss distributions and risk measures
Author(s) -
Meelis Käärik,
Anastassia Žegulova
Publication year - 2012
Publication title -
acta et commentationes universitatis tartuensis de mathematica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.276
H-Index - 6
eISSN - 2228-4699
pISSN - 1406-2283
DOI - 10.12697/acutm.2012.16.04
Subject(s) - generalized pareto distribution , heavy tailed distribution , range (aeronautics) , econometrics , stability (learning theory) , pareto distribution , pareto principle , liability , log normal distribution , distribution (mathematics) , extreme value theory , estimation , computer science , mathematics , statistics , actuarial science , economics , probability distribution , engineering , finance , mathematical analysis , management , machine learning , aerospace engineering
The estimation of certain loss distribution and analyzing its properties is a key issue in several finance mathematical and actuarial applications. It is common to apply the tools of extreme value theory and generalized Pareto distribution in problems related to heavy-tailed data. Our main goal is to study third party liability claims data obtained from Estonian Traffic Insurance Fund (ETIF). The data is quite typical for insurance claims containing very many observations and being heavytailed. In our approach the fitting consists of two parts: for main part of the distribution we use lognormal fit (which was the most suitable based on our previous studies) and a generalized Pareto distribution is used for the tail. Main emphasis of the fitting techniques is on the proper threshold selection. We seek for stability of parameter estimates and study the behaviour of risk measures at a wide range of thresholds. Two related lemmas will be proved.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom