Real-time Imaging of Hypoxia-inducible Factor-1 Activity in Tumor Xenografts
Author(s) -
Junye Liu,
Runjiang Qu,
Masakazu Ogura,
Toru Shibata,
Hiroshi Harada,
Masahiro Hiraoka
Publication year - 2005
Publication title -
journal of radiation research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.643
H-Index - 60
eISSN - 1349-9157
pISSN - 0449-3060
DOI - 10.1269/jrr.46.93
Subject(s) - tumor hypoxia , oxygen tension , hypoxia (environmental) , reporter gene , angiogenesis , cancer research , metastasis , hypoxia inducible factors , gene , immunohistochemistry , in vivo , cell culture , melanoma , fluorescence , chemistry , microbiology and biotechnology , gene expression , biology , pathology , cancer , medicine , oxygen , radiation therapy , biochemistry , genetics , organic chemistry , physics , quantum mechanics
Hypoxia-inducible factor-1 (HIF-1) is responsible for various gene expressions related to tumor malignancy, such as metastasis, invasion and angiogenesis. Therefore, monitoring HIF-1 activity in solid tumors is becoming increasingly important in clinical and basic studies. To establish a convenient system for visualizing HIF-1 activity in tumor xenografts, we employed a promoter consisting of five copies of hypoxia response elements (5HRE), whose activity depends on HIF-1, and used a derivative of green fluorescence protein (d2EGFP) as a reporter gene. A human melanoma cell line, Be11, which contains the 5HRE-d2EGFP gene, showed fluorescence in response to hypoxia. The fluorescent intensity correlated inversely with the surrounding oxygen tension, and was time-dependent for the hypoxic treatment. Reoxygenation resulted in a rapid decrease in fluorescence due to the signal sequence for protein degradation encoded in d2EGFP, which enabled monitoring of HIF-1 activity in real-time. Heterogeneous fluorescence was observed in the solid tumor of a non-sacrificed tumor-bearing mouse. Immunohistochemical analysis confirmed that d2EGFP-expressing regions overlapped with the ones stained with a hypoxia marker, pimonidazole. These results suggest that the 5HRE-d2EGFP gene is suitable for the real-time imaging of HIF-1-activating cells in vivo, due to the short half-life of the d2EGFP protein as well as the specificity of the 5HRE promoter for HIF-1 activity.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom