z-logo
open-access-imgOpen Access
p53 Phosphorylation in Mouse Skin and In vitro Human Skin Model by High-dose-radiation Exposure
Author(s) -
Manabu Koike,
Jun Sugasawa,
Aki Koike,
Yoko Kohno
Publication year - 2005
Publication title -
journal of radiation research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.643
H-Index - 60
eISSN - 1349-9157
pISSN - 0449-3060
DOI - 10.1269/jrr.46.461
Subject(s) - phosphorylation , human skin , dna damage , cancer research , kinase , ataxia telangiectasia , in vitro , apoptosis , microbiology and biotechnology , chemistry , dna , biology , biochemistry , genetics
The skin is an external organ that is most frequently exposed to radiation. High-dose radiation initiates and promotes acute radiation injury. Thus, it is important to investigate the influence of high-dose radiation exposure on the skin at the molecular level. The post-translational modification of p53 plays a central role in radiation responses, including apoptosis and cell growth arrest. Although it is well known that ataxia telangiectasia mutated (ATM) kinase and DNA-dependent protein kinase (DNA-PK) can phosphorylate Ser15/Ser18 of p53 in vitro, the post-translational modification pattern and the modifier of p53 in the skin after exposure to high-dose X-rays are not yet well understood. Here we show that the phosphorylation of p53 on Ser15/Ser18, as well as the phosphorylation of histone H2AX on Ser139, was detected in the keratinocytes of the mouse skin and human skin models after high-dose X-ray irradiation. Following high-dose X-ray irradiation, both proteins were also phosphorylated in the skin keratinocytes of both ATM gene knockout mice and DNA-PK-deficient SCID mice.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom