z-logo
open-access-imgOpen Access
Recent Progress in In Vivo ESR Spectroscopy
Author(s) -
Keizo Takeshita,
Toshihiko Ozawa
Publication year - 2004
Publication title -
journal of radiation research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.643
H-Index - 60
eISSN - 1349-9157
pISSN - 0449-3060
DOI - 10.1269/jrr.45.373
Subject(s) - in vivo , spectroscopy , radical , in vivo magnetic resonance spectroscopy , electron paramagnetic resonance , oxidative stress , nuclear magnetic resonance , chemistry , oxidative phosphorylation , biophysics , materials science , medicine , magnetic resonance imaging , biochemistry , biology , physics , microbiology and biotechnology , radiology , quantum mechanics
The generation of free radicals and redox status is related to various diseases and injuries that are related to radiation, aging, ischemia-reperfusion, and other oxidative factors. In vivo electron spin resonance (ESR) spectroscopy is noninvasive and detects durable free radicals in live animals. ESR spectrometers for in vivo measurements operate at a lower frequency (approximately 3.5 GHz, approximately 1 GHz, 700 MHz, and approximately 300 MHz) than usual (9-10 GHz). Several types of resonators have been designed to minimize the dielectric loss of electromagnetic waves caused by water in animal bodies. In vivo ESR spectroscopy and its imaging have been used to analyze radical generation, redox status, partial pressure of oxygen and other conditions in various disease and injury models related to oxidative stress with probes, such as nitroxyl radicals. Through these applications, the clarification of the mechanisms related to oxidative diseases (injuries) and the accumulation of basic data for radiological cancer therapy are now ongoing. In vivo ESR measurement is performed in about 10 laboratories worldwide, including ours. To introduce in vivo ESR spectroscopy to life scientists, this article reviews the recent progress of in vivo ESR spectroscopy in instrumentation and its application to the life sciences.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom