z-logo
open-access-imgOpen Access
The Establishment and Characterization of Cell Lines Stably Expressing Human Ku80 Tagged with Enhanced Green Fluorescent Protein
Author(s) -
Manabu Koike,
Aki Koike
Publication year - 2004
Publication title -
journal of radiation research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.643
H-Index - 60
eISSN - 1349-9157
pISSN - 0449-3060
DOI - 10.1269/jrr.45.119
Subject(s) - ku80 , ku70 , dna repair , green fluorescent protein , biology , microbiology and biotechnology , nuclear protein , dna , genetics , transcription factor , gene , dna binding protein
The Ku protein is a complex of two subunits, Ku70 and Ku80, and it plays a role in multiple nuclear processes, e.g., nonhomologous DNA-end-joining (NHEJ), chromosome maintenance, and transcription regulation. On the other hand, several studies have reported a cytoplasmic or cell surface localization of Ku in various cell types. The mechanism underlying the regulation of all the diverse functions of Ku is still unclear, though the mechanism that regulates the nuclear localization of Ku70 and Ku80 appears to play, at least in part, a key role in regulating the physiological function of Ku. In this study, we generated cell lines expressing the human Ku80 tagged with the green fluorescent protein (GFP) color variants in Ku80-deficient cells, i.e., xrs-6 derived from CHO-K1. Although Ku70, as well as Ku80, was undetectable in xrs-6 cells, it was seen in these transformants at a level similar to the level of CHO-K1. Furthermore, etoposide- and radiosensitive phenotype of xrs-6 cells were corrected by an introduction of the tagged Ku80. Moreover, the tagged Ku80 suppressed apoptosis triggered by DNA damage. These results demonstrate that fusion to the GFP color variants does not interfere with the functions of the Ku80 in the Ku-dependent DSB repair. Therefore, these transformants might be useful not only in the analysis of Ku80 behavior, but also in an analysis of the dynamics of the NHEJ repair process.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom