Age-associated Decrease of Oxidative Repair Enzymes, Human 8-Oxoguanine DNA Glycosylases (hOgg1), in Human Aging
Author(s) -
Shin-Kuang CHEN,
Wanhua Annie Hsieh,
MongHsun Tsai,
Chien-Chih Chen,
ANTONIO IC. HONG,
Yau–Huei Wei,
Wushou P. Chang
Publication year - 2003
Publication title -
journal of radiation research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.643
H-Index - 60
eISSN - 1349-9157
pISSN - 0449-3060
DOI - 10.1269/jrr.44.31
Subject(s) - dna glycosylase , dna repair , dna , oxidative phosphorylation , oxidative damage , enzyme , biochemistry , mutyh , chemistry , genetics , biology
8-Oxoguanine has been shown to be a dominant cause of oxidative DNA damage by oxygen free radicals in eukaryotic cells. The 8-oxoguanine repair-specific enzyme 8-oxoguanine-DNA glycosylase (hOgg1) was recently cloned and was observed to conduct mainly short-patch base-excision repair. It has also been suggested that reactive oxygen species play an important role in the cellular aging process. We explored the association between the hOgg1 enzyme activity in somatic cells of human subjects of various ages and the role of hOgg1(326) genetic polymorphism. An 8-oxoguanine-containing 28 mer oligonucleotide was end-labeled with gamma-32P ATP and incubated with protein extracts from peripheral blood lymphocytes (PBL) from 78 healthy individuals ranging in age from newborn to 91 years old. The hOgg1 repair activity toward the radiolabelled 8-oxoguanine-containing DNA was determined, and the results indicated a significant age-dependent decrease in the hOgg1 activity in their lymphocytes. Significantly reduced activity was also shown in those with Cysteine/Cysteine genotypes. The genders of the subjects were not shown to be associated. These results provide an important observation regarding the cellular hOgg1 activity in somatic cells during the normal human aging processes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom