Long-term Exposure to a Magnetic Field (5 mT at 60 Hz) Increases X-ray-induced Mutations
Author(s) -
Junji Miyakoshi,
YASUHIRO KOJI,
TETSUJI WAKASA,
Hiraku Takebe
Publication year - 1999
Publication title -
journal of radiation research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.643
H-Index - 60
eISSN - 1349-9157
pISSN - 0449-3060
DOI - 10.1269/jrr.40.13
Subject(s) - hypoxanthine guanine phosphoribosyltransferase , mutant , chinese hamster ovary cell , microbiology and biotechnology , mutation , irradiation , mutation frequency , biology , chemistry , genetics , gene , cell culture , physics , nuclear physics
Exposure to extremely low frequency magnetic field (ELFMF) at 400 mT has been shown to induce mutations (Mutat. Res., 349: 109-114, 1996; Int. J. Radiat. Biol., 71: 75-79, 1997; and Biochem. Biophys. Res. Commun., 243: 579-584, 1998). However, whether ELFMF at low flux densities (under 1 mT) induces mutations is debatable. We investigated the effect of long-term exposure to 5 mT ELFMF at 60 Hz on mutant frequency. Chinese hamster ovary K1 (CHO-K1) cells were exposed or sham-exposed to 5 mT ELFMF for up to 6 weeks with or without X-irradiation (3 Gy), and the mutant frequency of the hypoxanthine-guanine phosphoribosyl transferase (HPRT) gene was analyzed. Long-term exposure to 5 mT ELFMF did not increase mutations, suggesting a threshold for mutation induction greater than 115 mA/m2 or a magnetic density of 5 mT. However, enhancement of the X-ray-induced mutation rate was observed after treatment with X-irradiation followed by long-term exposure to 5 mT ELFMF. At little as a 1-week exposure to ELFMF after X-irradiation enhanced the mutation rate. We also found that 400 mT exposure enhanced the mutation rate induced by X-irradiation (Mutat. Res., 349: 109-114, 1996). These results suggest that exposure to more than 5 mT ELFMF may promote X-ray-induced mutations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom