z-logo
open-access-imgOpen Access
Neutron and .GAMMA.-irradiation of bacteriophage M13 DNA: Use of standard neutron irradiation facility(SNIF).
Author(s) -
Surinder Singh,
David D. Cohen,
N. Dytlewski,
Jane Houldsworth,
Martin F. Lavin
Publication year - 1990
Publication title -
journal of radiation research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.643
H-Index - 60
eISSN - 1349-9157
pISSN - 0449-3060
DOI - 10.1269/jrr.31.340
Subject(s) - van de graaff generator , neutron , radiochemistry , irradiation , relative biological effectiveness , neutron temperature , neutron flux , nuclear physics , neutron source , physics , chemistry , optics , beam (structure)
We describe here the use of the Van de Graaff accelerator as a source of high energy neutrons for biological irradiation. Single-stranded bacteriophage M13 DNA was chosen as the system to determine the relative biological effectiveness of monoenergetic neutrons. A Standard Neutron Irradiation Facility (SNIF) was established using a 3 MV Van de Graaff accelerator. The 2D (d,n)3He nuclear reaction was used to produce neutron fluxes of 3 x 10(8) cm 2 sec-1 yielding dose rates as high as 50 Gy h-1. A detailed description of the neutron source, neutron fluence measurement, dose calculation and calibration are included. Exposure of single-stranded bacteriophage M13 DNA to 90 Gy of neutrons reduced survival to 0.18% of the unirradiated value. 500 Gy of gamma-rays were required for the same level of killing, and RBE was estimated at 6 based on Do values. Determination of the extent of DNA damage after exposure to cleavage using gel electrophoresis, gave RBE values of 6-8 which was very similar to that observed for bacteriophage survival. The facility described here provides a reproducible source of high energy monoenergetic neutrons and dose levels suitable for experiments designed to measure DNA damage and effects on DNA synthesis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom