Differences in the Susceptibility to Iodine<sup>131</sup>-induced Thyroid Tumours amongst Inbred Mouse Strains
Author(s) -
Claudia Dalke,
Gabriele H Ouml LZLWIMMER,
Julia CalzadaWack,
Leticia QuintanillaMartinez,
Michael J. Atkinson,
Michael Rosemann
Publication year - 2012
Publication title -
journal of radiation research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.643
H-Index - 60
eISSN - 1349-9157
pISSN - 0449-3060
DOI - 10.1269/jrr.11182
Subject(s) - thyroid , adenoma , biology , thyroid cancer , follicular cell , hras , thyroid carcinoma , inbred strain , offspring , hyperplasia , follicular phase , endocrinology , carcinogen , medicine , mutation , kras , genetics , gene , pregnancy
Genetic factors can modify susceptibility to the carcinogenic effect of ionising radiation. To establish if radioiodine-induced thyroid cancer is similarly genetically influenced, we studied F1 hybrid crosses between inbred mouse strains. Mice were perinatally exposed to iodine-131 and thyroid tissues examined after 18 months. Differences in the incidence and distribution of histological subtypes were quantified in relation to genetic background. As expected, the occurrence of thyroid lesions was significantly higher in irradiated mouse hybrids than in unirradiated controls. The most frequent alterations were the simple and the complex hyperplasias, followed by follicular adenoma and, less frequently, follicular carcinoma. Both the incidence and distribution of the histiotype were different between the hybrid mouse crosses. Crosses using JF1 mice (M. m. molossinus) produced F1 offspring that were more resistant to radiation-induced thyroid lesions. Sequence analysis of Braf, Ret, Hras, Kras, Kit and Trp53, all genes that are commonly mutated in human thyroid cancers, did not show any evidence of mutation in the tumours. However, microsatellite analysis of genomic DNA revealed frequent allelic imbalances in complex hyperplasia and follicular adenoma. We conclude that genetic background, in particular the JF1 genotype, confer differences in susceptibility to the carcinogenic effects of radioiodine on the thyroid.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom