z-logo
open-access-imgOpen Access
Characterization and Radio-resistant Function of Manganese Superoxide Dismutase of Rubrobacter radiotolerans
Author(s) -
Hiroaki Terato,
Katsuyuki Suzuki,
Nobuhiro Nishioka,
Atsushi Okamoto,
Yuka Shimazaki-Tokuyama,
Yuko Inoue,
Takeshi Saito
Publication year - 2011
Publication title -
journal of radiation research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.643
H-Index - 60
eISSN - 1349-9157
pISSN - 0449-3060
DOI - 10.1269/jrr.11105
Subject(s) - superoxide dismutase , gene , microbiology and biotechnology , escherichia coli , biology , biochemistry , mutant , open reading frame , chemistry , peptide sequence , enzyme
Rubrobacter radiotolerans is the most radio-resistant eubacterium without spore-formation in the life cycle, and its D(37) is 16,000 Gy against gamma-rays. To understand the molecular mechanism of the high radio-resistance, we purified and characterized superoxide dismutase (SOD) of this organism as enzymatic radical scavenger, and then analyzed its genetic information. The purified SOD protein formed homo-tetramerization of 24,000 Da-monomer, while maintaining its enzymatic activity against potassium cyanide and hydrogen peroxide. We obtained a partial amino acid sequence of the protein and cloned the gene from it. Sequence analysis of the cloned gene indicated that the protein showed a similarity to other bacterial manganese SODs (Mn-SODs). Sequencing for adjacent regions of the gene showed that the gene had promoter elements with an open reading frame for putative PAS/PAC sensor protein at the 5'-adjacent region. Introduction of the gene into Escherichia coli cells lacking intrinsic SOD genes restored the cellular enzymatic activity and resistance to methyl viologen, indicating the gene at work. A mutant cell harboring this gene also became resistant against gamma-rays. The present results suggest that the protein in question is the Mn-SOD of R. radiotolerans, a good candidate as a radio-protection factor for this bacterial radio-resistance.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom