z-logo
open-access-imgOpen Access
Carbon Ion Irradiation Suppresses Metastatic Potential of Human Non-small Cell Lung Cancer A549 Cells through the Phosphatidylinositol-3-Kinase/Akt Signaling Pathway
Author(s) -
Toshiyuki Ogata,
Teruki Teshima,
Miho Inaoka,
Kazumasa Minami,
Takahiro Tsuchiya,
Masaru Isono,
Yoshiya Furusawa,
Nariaki Matsuura∥
Publication year - 2011
Publication title -
journal of radiation research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.643
H-Index - 60
eISSN - 1349-9157
pISSN - 0449-3060
DOI - 10.1269/jrr.10102
Subject(s) - protein kinase b , pi3k/akt/mtor pathway , a549 cell , phosphatidylinositol , cancer research , irradiation , chemistry , signal transduction , microbiology and biotechnology , cell , biology , biochemistry , physics , nuclear physics
We previously showed that carbon ion irradiation can inhibit the expression of the anillin (ANLN) gene, which is regulated by the activation of the phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway associated with metastasis. The purpose of this study is to compare the effects of carbon ion irradiation on the PI3K/Akt signaling pathway to those of photon irradiation. Our study showed that carbon ion irradiation of human lung adenocarcinoma cells A549 decreased their invasion more effectively than photon irradiation did. We found that carbon ion irradiation reduced the nuclear localization of ANLN at lower dose, but did not affect its expression. Low-dose carbon ion irradiation also reduced the level of phosphorylated Akt compared to untreated controls, whereas photon irradiation did not. These results suggest that carbon ion irradiation effectively suppresses the metastatic potential of A549 cells by suppressing the PI3K/Akt signaling pathway.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom