z-logo
open-access-imgOpen Access
Intrafractional Respiratory Motion for Charged Particle Lung Therapy with Immobilization Assessed by Four-Dimensional Computed Tomography
Author(s) -
Suguru Dobashi,
Toshio Sugane,
Shinichiro Mori,
Hiroshi Asakura,
Naoyoshi Yamamoto,
Motoki Kumagai,
Susumu Kandatsu,
Masayuki Baba
Publication year - 2011
Publication title -
journal of radiation research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.643
H-Index - 60
eISSN - 1349-9157
pISSN - 0449-3060
DOI - 10.1269/jrr.10019
Subject(s) - exhalation , nuclear medicine , medicine , particle therapy , respiratory system , cone beam computed tomography , lung , radiation therapy , radiology , computed tomography
The aim of this study was to quantify the magnitude of intrafractional lung tumor motion under free-breathing conditions with an immobilization device using four-dimensional computed tomography (4DCT). 4DCT data sets were acquired for 17 patients with lung tumors receiving carbon ion beam therapy. A single respiratory cycle was subdivided into 10 phases, and intrafractional tumor motion was calculated by identifying the gross tumor volume (GTV) center of mass (COM) in two scenarios; respiratory-ungated and -gated treatments, which were based on a whole respiratory cycle and a 30% duty cycle around peak exhalation, respectively. For the respiratory-ungated case, the mean (± standard deviation) GTV-COM displacements from the peak exhalation position over the 17 patients were 0.6 (± 0.8) / 0.9 (± 1.2) mm, 2.0 (± 1.4) / 0.4 (± 0.7) mm, and 0.2 (± 0.5) / 7.8 (± 6.9) mm in left/right, anterior/posterior and superior/inferior directions, respectively, while these were reduced for the respiratory-gated case to 0.3 (± 0.4) / 0.4 (± 0.6) mm (left/right), 0.8 (± 0.7) / 0.3 (± 0.5) mm (anterior/posterior), and 0.1 (± 0.2) / 2.8 (± 2.9) mm (superior/inferior). Quantitative analysis of tumor motion with immobilization is valuable not only for particle beam therapy but also for photon beam therapy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom