z-logo
open-access-imgOpen Access
Myricetin Inhibits Akt Survival Signaling and Induces Bad-mediated Apoptosis in a Low Dose Ultraviolet (UV)-B-irradiated HaCaT Human Immortalized Keratinocytes
Author(s) -
Wanyeon Kim,
Hee Jung Yang,
HyeSook Youn,
Young Ju Yun,
Ki Moon Seong,
BuHyun Youn
Publication year - 2010
Publication title -
journal of radiation research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.643
H-Index - 60
eISSN - 1349-9157
pISSN - 0449-3060
DOI - 10.1269/jrr.09141
Subject(s) - myricetin , hacat , protein kinase b , apoptosis , uvb induced apoptosis , chemistry , signal transduction , cancer research , cancer cell , programmed cell death , pharmacology , biology , microbiology and biotechnology , biochemistry , cancer , caspase , antioxidant , flavonoid , in vitro , kaempferol , genetics
Deregulation of cell survival pathways and resistance to apoptosis are generally accepted as crucial aspects of tumorigenesis. As in many tumors, increasing occurrence of human skin cancer and other conflicting effects of solar ultraviolet (UV) radiation enhance the demand for novel chemoprevention agents. Myricetin, a naturally occurring phytochemical, is potent in anti-cancer promoting activity and affords to the chemopreventive potential of several healthy-foods, including fruits and vegetables. We demonstrate here that myricetin inhibits Akt activity to induce apoptosis in a low dose ('repairable dose') UVB-irradiated keratinocytes. Treatment of UVB-irradiated HaCaT cells with an apoptosis-inducing concentration of myricetin (20 microM) resulted in a decrease in phosphorylation of Akt leading to inhibition of its kinase activity. Myricetin treatment also caused a decrease in phosphorylation of Bad (a pro-apoptotic protein), a direct target of Akt in signaling pathway. Interaction between Bad and 14-3-3beta was reduced markedly in UVB-irradiated cells upon a treatment with myricetin. Comparable to these results, myricetin treatment promoted mitochondrial translocation of Bad, loss of the mitochondrial membrane potential, and release of the mitochondrial apoptotic proteins including cytochrome c, Smac, and AIF. Ectopic expression of constitutively active Akt granted statistically significant protection against myricetin-induced apoptosis. In addition, myricetin-induced apoptosis in UVB-irradiated cells was notably attenuated in the presence of caspase inhibitors. Together, these results indicate that myricetin might take on potent chemopreventive activity by inhibiting the Akt-mediated survival signaling axis in UVB-induced skin carcinogenesis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom