z-logo
open-access-imgOpen Access
Recent Advances in the Biology of Heavy-Ion Cancer Therapy
Author(s) -
Nobuyuki Hamada,
Tatsuhiko Imaoka,
Shinichiro Masunaga,
Toshiyuki Ogata,
Ryuichi Okayasu,
Akihisa Takahashi,
Takamitsu A. Kato,
Yasuhiko Kobayashi,
Takeo Ohnishi,
Koji Ono,
Yoshiya Shimada,
Teruki Teshima
Publication year - 2010
Publication title -
journal of radiation research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.643
H-Index - 60
eISSN - 1349-9157
pISSN - 0449-3060
DOI - 10.1269/jrr.09137
Subject(s) - cancer therapy , heavy ion , cancer , computational biology , physiology , medicine , biology , physics , ion , quantum mechanics
Superb biological effectiveness and dose conformity represent a rationale for heavy-ion therapy, which has thus far achieved good cancer controllability while sparing critical normal organs. Immediately after irradiation, heavy ions produce dense ionization along their trajectories, cause irreparable clustered DNA damage, and alter cellular ultrastructure. These ions, as a consequence, inactivate cells more effectively with less cell-cycle and oxygen dependence than conventional photons. The modes of heavy ion-induced cell death/inactivation include apoptosis, necrosis, autophagy, premature senescence, accelerated differentiation, delayed reproductive death of progeny cells, and bystander cell death. This paper briefly reviews the current knowledge of the biological aspects of heavy-ion therapy, with emphasis on the authors' recent findings. The topics include (i) repair mechanisms of heavy ion-induced DNA damage, (ii) superior effects of heavy ions on radioresistant tumor cells (intratumor quiescent cell population, TP53-mutated and BCL2-overexpressing tumors), (iii) novel capacity of heavy ions in suppressing cancer metastasis and neoangiogenesis, and (iv) potential of heavy ions to induce secondary (especially breast) cancer.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom