Vanguards of Paradigm Shift in Radiation Biology: Radiation-Induced Adaptive and Bystander Responses
Author(s) -
Hideki Matsumoto,
Nobuyuki Hamada,
Akihisa Takahashi,
Yasuhiko Kobayashi,
Takeo Ohnishi
Publication year - 2007
Publication title -
journal of radiation research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.643
H-Index - 60
eISSN - 1349-9157
pISSN - 0449-3060
DOI - 10.1269/jrr.06090
Subject(s) - bystander effect , ionizing radiation , low dose radiation , dose rate , adaptive response , radiobiology , radiation dose , radiation exposure , radiation , computational biology , biology , dose–response relationship , medicine , irradiation , genetics , physics , medical physics , nuclear medicine , pharmacology , immunology , radiation therapy , optics , nuclear physics
The risks of exposure to low dose ionizing radiation (below 100 mSv) are estimated by extrapolating from data obtained after exposure to high dose radiation, using a linear no-threshold model (LNT model). However, the validity of using this dose-response model is controversial because evidence accumulated over the past decade has indicated that living organisms, including humans, respond differently to low dose/low dose-rate radiation than they do to high dose/high dose-rate radiation. In other words, there are accumulated findings which cannot be explained by the classical "target theory" of radiation biology. The radioadaptive response, radiation-induced bystander effects, low-dose radio-hypersensitivity, and genomic instability are specifically observed in response to low dose/low dose-rate radiation, and the mechanisms underlying these responses often involve biochemical/molecular signals that respond to targeted and non-targeted events. Recently, correlations between the radioadaptive and bystander responses have been increasingly reported. The present review focuses on the latter two phenomena by summarizing observations supporting their existence, and discussing the linkage between them from the aspect of production of reactive oxygen and nitrogen species.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom