Cell Cycle Checkpoint and Apoptosis Induction in Glioblastoma Cells and Fibroblasts Irradiated with Carbon Beam
Author(s) -
Koji Tsuboi,
Takashi Moritake,
Yukihiro Tsuchida,
Koichi Tokuuye,
Akira Matsumura,
Koichi Andō
Publication year - 2007
Publication title -
journal of radiation research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.643
H-Index - 60
eISSN - 1349-9157
pISSN - 0449-3060
DOI - 10.1269/jrr.06081
Subject(s) - radioresistance , radiosensitivity , apoptosis , cell culture , programmed cell death , cell cycle , flow cytometry , cell cycle checkpoint , cell , microbiology and biotechnology , cancer research , cell growth , biology , chemistry , irradiation , genetics , physics , nuclear physics
This study was conducted in order to evaluate the cytotoxicity of high linear-energy-transfer (LET) ionizing radiation (IR) on glioblastoma cells and fibroblasts using different modes of cell inactivation assays. Two human glioblastoma cell lines with or without p53-mutation, and fibroblasts were used as materials. Gamma rays and 290 MeV/u carbon beams with LET values of 20, 40, 80 keV/mum were used. To evaluate cell inactivation, we used colony formation assay, morphological detection of apoptosis, and flow-cytometry. Serial expressions of p53 and p21 were analyzed by immunoblotting. High-LET IR reduced the reproductive potency of these cells to identical levels in spite of differences in gamma-sensitivity, and yield of cell death correlated to LET values. A p53-wild-type glioblastoma cell line demonstrated a higher yield of apoptosis than other cell lines, whereas fibroblasts hardly displayed any cell death indicating senescence-like growth arrest even after high LET IR. A p53-mutant tumor cell line demonstrated very low yield of cell death with prominent G2/M arrest. Results of radiosensitivity differ according to what mode of cell inactivation is selected. While fibroblasts depend on G1 block after IR, G2/M blocks may play crucial roles in the radioresistance of p53-mutant glioblastoma cells.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom