z-logo
open-access-imgOpen Access
A New Method for the Simultaneous Detection of Mammalian Cells and Ion Tracks on a Surface of CR-39
Author(s) -
Teruaki Konishi,
K. Amemiya,
Toshiyuki Natsume,
Akihiro Takeyasu,
N. Yasuda,
Yoshiya Furusawa,
Kotaro Hieda
Publication year - 2007
Publication title -
journal of radiation research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.643
H-Index - 60
eISSN - 1349-9157
pISSN - 0449-3060
DOI - 10.1269/jrr.06078
Subject(s) - ion , irradiation , materials science , heavy ion , fluorescence , boron , microscope , optoelectronics , optics , biophysics , chemistry , physics , biology , nuclear physics , organic chemistry
The geometric locations of ion traversals in mammalian cells constitute important information in the study of heavy ion-induced biological effects. We employed a contact microscopy technique, which was developed for boron imaging in boron neutron capture therapy to the irradiation mammalian cells by low-energy heavy ions. This method enables the simultaneous visualization of mammalian cells as a relief on a plastic track detector, CR-39, and the etch pits which indicate the positions of ion traversals. This technique provides visual geometric information about the cells and ion traversal, without any specially designed devices or microscopes. Only common laboratory equipment, such as a conventional optical microscope, a UV lamp, and commercially available CR-39 is required. To validate this method, CHO-K1 and HeLa cells were cultured on the CR-39 surface and then irradiated with low-energy Ar and Ne ions, respectively. The positions of induced DNA double strand breaks were detected as gamma-H2AX fluorescent spots, which coincided with the positions of the etch pits in the cell relief image.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom