
Activation of regulatory T cells triggers specific changes in glycosylation associated with Siglec-1-dependent inflammatory responses
Author(s) -
Gang Wu,
Gavuthami Murugesan,
Manjula Nagala,
Alex McCraw,
Stuart M. Haslam,
Anne Dell,
Paul R. Crocker
Publication year - 2021
Publication title -
wellcome open research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.298
H-Index - 21
ISSN - 2398-502X
DOI - 10.12688/wellcomeopenres.16834.1
Subject(s) - siglec , downregulation and upregulation , glycomics , microbiology and biotechnology , receptor , glycosylation , glycan , chemistry , inflammation , biology , glycoprotein , immunology , biochemistry , gene
Background : Siglec-1 is a macrophage lectin-like receptor that mediates sialic acid-dependent cellular interactions. Its upregulation on macrophages in autoimmune disease was shown previously to promote inflammation through suppressing the expansion of regulatory T cells (Tregs). Here we investigate the molecular basis for Siglec-1 binding to Tregs using in vitro -induced cells as a model system. Methods : Glycosylation changes that affect Siglec‑1 binding were studied by comparing activated and resting Tregs using RNA-Seq, glycomics, proteomics and binding of selected antibodies and lectins. A proximity labelling and proteomics strategy was used to identify Siglec-1 counter-receptors expressed on activated Tregs. Results : Siglec-1 binding was strongly upregulated on activated Tregs, but lost under resting conditions. Glycomics revealed changes in N-glycans and glycolipids following Treg activation and we observed changes in expression of multiple ‘glycogenes’ that could lead to the observed increase in Siglec-1 binding. Proximity labelling of intact, living cells identified 49 glycoproteins expressed by activated Tregs that may function as Siglec-1 counter-receptors. These represent ~5% of the total membrane protein pool and were mainly related to T cell activation and proliferation. We demonstrate that several of these counter-receptors were upregulated following activation of Tregs and provide initial evidence that their altered glycosylation may also be important for Siglec-1 binding. Conclusions : We provide the first comprehensive analysis of glycan changes that occur in activated Tregs, leading to recognition by the macrophage lectin, Siglec-1 and suppression of Treg expansion. We furthermore provide insights into glycoprotein counter-receptors for Siglec-1 expressed by activated Tregs that are likely to be important for suppressing Treg expansion.