z-logo
open-access-imgOpen Access
Beyond mean-field dynamics in closed and open bosonic systems
Author(s) -
G. Kordas
Publication year - 2013
Language(s) - English
Resource type - Dissertations/theses
DOI - 10.12681/eadd/35540
Subject(s) - boson , path integral formulation , physics , coherence (philosophical gambling strategy) , quantum , coherent states , formalism (music) , nonlinear system , statistical physics , phase space , classical mechanics , quantum mechanics , theoretical physics , art , musical , visual arts
The present thesis is devoted to the dynamics in open or closed manybodybosonic systems, with the use of beyond mean-eld methods.In the rst part, inspired by the state-of-the-art experiments, we study thedynamics of a Bose-Einstein condensation which is loaded in an optical latticewith localized loss channels for the atoms. We prove that the particularform of the dissipation can help us to control the many-body dynamics. Theloss allows the local manipulation of the system's coherence properties andcreates attractive xed points in the classical (mean-eld) phase space. Wepredict the dynamical creation of stable nonlinear structures like discretebright and dark solitons. Furthermore, for specic initial states, the systemsproduces highly entangled and long-living states, which are of high relevancefor practical applications. The rst part of this thesis ends with the study ofnon-equilibrium bosonic transport across optical one-dimensional lattices.In the second part, we present techniques for bosonic many-body systemswhich are based on path integrals. We analyze the Bose-Einstein condensationphenomenon by using tools from quantum information theory and eldtheory. Finally, we introduce a coherent state path integral formalism inthe continuum, which allows us the systematic development of approximatemethods for the study of bosons in optical lattices.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom