SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer
Author(s) -
Marjan Askarian-Amiri,
Joanna Crawford,
Juliet D. French,
Chanel E. Smart,
Martin A. Smith,
Michael B. Clark,
Kelin Ru,
Tim R. Mercer,
Ella R. Thompson,
Sunil R. Lakhani,
Ana Cristina Vargas,
Ian Campbell,
Melissa A. Brown,
Marcel E. Dinger,
John S. Mattick
Publication year - 2011
Publication title -
rna
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.037
H-Index - 171
eISSN - 1469-9001
pISSN - 1355-8382
DOI - 10.1261/rna.2528811
Subject(s) - biology , small nucleolar rna , long non coding rna , gene knockdown , xist , regulation of gene expression , microbiology and biotechnology , rna , gene expression , gene , genetics , cancer research , x inactivation , x chromosome
Long noncoding RNAs (lncRNAs) are increasingly recognized to play major regulatory roles in development and disease. To identify novel regulators in breast biology, we identified differentially regulated lncRNAs during mouse mammary development. Among the highest and most differentially expressed was a transcript (Zfas1) antisense to the 5' end of the protein-coding gene Znfx1. In vivo, Zfas1 RNA is localized within the ducts and alveoli of the mammary gland. Zfas1 intronically hosts three previously undescribed C/D box snoRNAs (SNORDs): Snord12, Snord12b, and Snord12c. In contrast to the general assumption that noncoding SNORD-host transcripts function only as vehicles to generate snoRNAs, knockdown of Zfas1 in a mammary epithelial cell line resulted in increased cellular proliferation and differentiation, while not substantially altering the levels of the SNORDs. In support of an independent function, we also found that Zfas1 is extremely stable, with a half-life >16 h. Expression analysis of the SNORDs revealed these were expressed at different levels, likely a result of distinct structures conferring differential stability. While there is relatively low primary sequence conservation between Zfas1 and its syntenic human ortholog ZFAS1, their predicted secondary structures have similar features. Like Zfas1, ZFAS1 is highly expressed in the mammary gland and is down-regulated in breast tumors compared to normal tissue. We propose a functional role for Zfas1/ ZFAS1 in the regulation of alveolar development and epithelial cell differentiation in the mammary gland, which, together with its dysregulation in human breast cancer, suggests ZFAS1 as a putative tumor suppressor gene.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom